	HOME' 2018年5月21	WORK 2 .⊟ ^{20:39}	1											
	MATH2010E HOMEWORK 1													
	Please do the following problems from "Thomas' Calculus" due to May 23, 5 pm.													
	Ex	ercises	12.3: (6, 15, 2	8									
	Ex	ercises	12.4: 3	34										
	Ex	ercises	12.5: (6, 47, 5	8, 64									
	Exercises 12.6: 4, 10, 12, 30.													
4	EXEYC	icoc	12	2										
2	XEYC	1565	12.	5										

Dot Product and Projections

In Exercises 1–8, find

a.
$$\mathbf{v} \cdot \mathbf{u}, |\mathbf{v}|, |\mathbf{u}|$$

- **b.** the cosine of the angle between \mathbf{v} and \mathbf{u}
- \mathbf{c} . the scalar component of \mathbf{u} in the direction of \mathbf{v}
- **d.** the vector $proj_v \mathbf{u}$.

1.
$$\mathbf{v} = 2\mathbf{i} - 4\mathbf{j} + \sqrt{5}\mathbf{k}$$
, $\mathbf{u} = -2\mathbf{i} + 4\mathbf{j} - \sqrt{5}\mathbf{k}$

2.
$$\mathbf{v} = (3/5)\mathbf{i} + (4/5)\mathbf{k}, \quad \mathbf{u} = 5\mathbf{i} + 12\mathbf{j}$$

3.
$$\mathbf{v} = 10\mathbf{i} + 11\mathbf{j} - 2\mathbf{k}, \quad \mathbf{u} = 3\mathbf{j} + 4\mathbf{k}$$

4.
$$\mathbf{v} = 2\mathbf{i} + 10\mathbf{j} - 11\mathbf{k}$$
, $\mathbf{u} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$

5.
$$v = 5j - 3k$$
, $u = i + j + k$

6.
$$\mathbf{v} = -\mathbf{i} + \mathbf{j}, \quad \mathbf{u} = \sqrt{2}\mathbf{i} + \sqrt{3}\mathbf{j} + 2\mathbf{k}$$

$$6.(a) v \cdot u = (-1, 1, 0) \cdot (\sqrt{2}, \sqrt{3}, 2)$$
$$= -\sqrt{2} + \sqrt{2}$$

$$|v| = \sqrt{|v|^2 + |v|^2} = \sqrt{2}$$

$$|u| = \sqrt{\sqrt{2^2 + \sqrt{3^2 + 2^2}}} = \sqrt{2 + 3 + 4} = 3.$$

(b)
$$\omega s \theta = \frac{v \cdot u}{|v| |u|} = \frac{-\sqrt{2} + \sqrt{3}}{3\sqrt{2}}$$

$$\frac{1}{10000} = (-\sqrt{2} + \sqrt{3})/\sqrt{2}$$

(d) Projv
$$u = \frac{u \cdot v}{|v|^2} v = \frac{-Jz + J3}{z} (-i+j)$$

= $\frac{Jz - J3}{z} i + \frac{-Jz + J3}{z} j$.

Direction angles and direction cosines The *direction angles* α , β , and γ of a vector $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ are defined as follows: α is the angle between \mathbf{v} and the positive x-axis $(0 \le \alpha \le \pi)$ β is the angle between \mathbf{v} and the positive y-axis $(0 \le \beta \le \pi)$ γ is the angle between \mathbf{v} and the positive z-axis $(0 \le \gamma \le \pi)$.

a. Show that

$$\cos \alpha = \frac{a}{|\mathbf{v}|}, \qquad \cos \beta = \frac{b}{|\mathbf{v}|}, \qquad \cos \gamma = \frac{c}{|\mathbf{v}|},$$

and $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$. These cosines are called the *direction cosines* of **v**.

b. Unit vectors are built from direction cosines Show that if $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ is a unit vector, then a, b, and c are the direction cosines of \mathbf{v} .

15. (a)
$$\cos \alpha = \frac{v \cdot i}{|v| \cdot |i|} = \frac{a}{|v|}$$
.
 $\cos \beta = \frac{v \cdot j}{|v| \cdot |i|} = \frac{b}{|v|}$.

$$\omega s \gamma = \frac{v \cdot k}{|v| \cdot |k|} = \frac{c}{|v|}$$

$$\cos^2 x + \omega s^2 \beta + \omega s^2 \gamma = \frac{\alpha^2 + b^2 + c^2}{|\nu|^2} = 1.$$

(b)
$$v: unit vector \Rightarrow |v|=1$$

$$\cos \alpha = \frac{a}{|v|} = a$$
. $\cos \beta = \frac{b}{|v|} = b$. $\omega s \gamma = c$.

Consider
$$u = (1,0,0)$$
, $v_1 = (0,1,0)$, $v_2 = (0,0,1)$

$$\Rightarrow u \cdot v_i = u \cdot v_2 = 0$$
, but $v_i \neq v_2$.

Exercises 12.4

- 33. Cancelation in cross products If $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$ and $\mathbf{u} \neq \mathbf{0}$, then does $\mathbf{v} = \mathbf{w}$? Give reasons for your answer.
- Double cancelation If $\mathbf{u} \neq \mathbf{0}$ and if $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$ and $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, then does $\mathbf{v} = \mathbf{w}$? Give reasons for your answer.

Known
$$U \times (V - W) = 0$$
, $U \cdot (V - W) = 0$.

Define
$$\widetilde{\mathcal{U}} \stackrel{\text{define}}{=} v - w$$
. $0 \stackrel{\text{define}}{=} angle between u, \widetilde{u} .$

$$0 = |u \times \widetilde{u}| = |u||\widetilde{u}| \sin \theta. & |u||\widetilde{u}| \cos \theta = 0.$$

$$U \neq 0 \Rightarrow |\widetilde{u}| \sin \theta = 0, |\widetilde{u}| \cos \theta = 0.$$
Since $\sin \theta$ and $\cos \theta$ cannot be 0 at the same time, we have $|\widetilde{u}| = 0. \Rightarrow v - w = 0.$

Exercises 12.5

Find parametric equations for the lines in Exercises 1–12.

- 1. The line through the point P(3, -4, -1) parallel to the vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$
- **2.** The line through P(1, 2, -1) and Q(-1, 0, 1)
- **3.** The line through P(-2, 0, 3) and Q(3, 5, -2)
- **4.** The line through P(1, 2, 0) and Q(1, 1, -1)
- 5. The line through the origin parallel to the vector $2\mathbf{j} + \mathbf{k}$
- The line through the point (3, -2, 1) parallel to the line x = 1 + 2t, y = 2 t, z = 3t

6. Direction vector:
$$(2,-1,3)$$
 $\Rightarrow equation: \chi = 3+2t$
 $\gamma = -2-t$

$$z = 1+3t$$
.

Angles

Find the angles between the planes in Exercises 47 and 48.

47.
$$x + y = 1$$
, $2x + y - 2z = 2$

48.
$$5x + y - z = 10$$
, $x - 2y + 3z = -1$

47. normal vectors:
$$n_1 = (1,1,0)$$
 $n_2 = (2,1,-2)$.

Angle between plane = Angle between normal vectors
$$= Arccos \frac{n_1 \cdot n_2}{|n_1||n_2|} = Arccos \frac{3}{\sqrt{2} \cdot 3} = Arccos \frac{1}{\sqrt{2}} = \frac{7}{4}.$$

Find parametrizations for the lines in which the planes in Exercises 57–60 intersect.

57.
$$x + y + z = 1$$
, $x + y = 2$

58)
$$3x - 6y - 2z = 3$$
, $2x + y - 2z = 2$

Two wormal vector
$$n_1 = (3, -6, -2)$$
, $n_2 = (2, 1, -2)$.

$$N_1 \times N_2 = \begin{bmatrix} i & j & K \\ 3 - 6 - 2 \\ 2 & 1 & 2 \end{bmatrix} = (10, -10, 15). // (-2, -2, 3)$$

This is the direction vector of the line.

$$\Rightarrow x = 1 - 2t$$

$$y = -2t$$

$$\Rightarrow \begin{cases} x = 1 - 2t \\ y = -2t \\ z = 3t \end{cases}$$

64. Use the component form to generate an equation for the plane through $P_1(4, 1, 5)$ normal to $\mathbf{n}_1 = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Then generate another equation for the same plane using the point $P_2(3, -2, 0)$ and the normal vector $\mathbf{n}_2 = -\sqrt{2}\mathbf{i} + 2\sqrt{2}\mathbf{j} - \sqrt{2}\mathbf{k}$.

64. ①
$$(x-4)-2(y-1)+(z-5)=0$$
.

$$0 - \sqrt{2}(x-3) + 2\sqrt{2}(y+2) - \sqrt{2}z = 0.$$

4.
$$-x^2+y^2+z^2=0$$
. Cone.

10.
$$Z = -4x^2 - y^2$$
. Parabolla.

$$2<0$$
, fixed \Rightarrow ellipse \Rightarrow \Rightarrow f .

12.
$$9x^2+4y^2+2z^2=36 \implies \text{ellipsoid}$$
.

